Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2307220121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621138

RESUMO

The expansion of the oil palm industry in Indonesia has improved livelihoods in rural communities, but comes at the cost of biodiversity and ecosystem degradation. Here, we investigated ways to balance ecological and economic outcomes of oil palm cultivation. We compared a wide range of production systems, including smallholder plantations, industrialized company estates, estates with improved agronomic management, and estates with native tree enrichment. Across all management types, we assessed multiple indicators of biodiversity, ecosystem functions, management, and landscape structure to identify factors that facilitate economic-ecological win-wins, using palm yields as measure of economic performance. Although, we found that yields in industrialized estates were, on average, twice as high as those in smallholder plantations, ecological indicators displayed substantial variability across systems, regardless of yield variations, highlighting potential for economic-ecological win-wins. Reducing management intensity (e.g., mechanical weeding instead of herbicide application) did not lower yields but improved ecological outcomes at moderate costs, making it a potential measure for balancing economic and ecological demands. Additionally, maintaining forest cover in the landscape generally enhanced local biodiversity and ecosystem functioning within plantations. Enriching plantations with native trees is also a promising strategy to increase ecological value without reducing productivity. Overall, we recommend closing yield gaps in smallholder cultivation through careful intensification, whereas conventional plantations could reduce management intensity without sacrificing yield. Our study highlights various pathways to reconcile the economics and ecology of palm oil production and identifies management practices for a more sustainable future of oil palm cultivation.


Assuntos
Arecaceae , Óleos Industriais , Ecossistema , Florestas , Biodiversidade , Agricultura , Árvores , Óleo de Palmeira , Conservação dos Recursos Naturais
2.
Science ; 384(6691): 87-93, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574149

RESUMO

Agricultural simplification continues to expand at the expense of more diverse forms of agriculture. This simplification, for example, in the form of intensively managed monocultures, poses a risk to keeping the world within safe and just Earth system boundaries. Here, we estimated how agricultural diversification simultaneously affects social and environmental outcomes. Drawing from 24 studies in 11 countries across 2655 farms, we show how five diversification strategies focusing on livestock, crops, soils, noncrop plantings, and water conservation benefit social (e.g., human well-being, yields, and food security) and environmental (e.g., biodiversity, ecosystem services, and reduced environmental externalities) outcomes. We found that applying multiple diversification strategies creates more positive outcomes than individual management strategies alone. To realize these benefits, well-designed policies are needed to incentivize the adoption of multiple diversification strategies in unison.


Assuntos
Agricultura , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Humanos , Fazendas , Solo
3.
J Environ Manage ; 356: 120710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547822

RESUMO

In tropical regions, shifting from forests and traditional agroforestry to intensive plantations generates conflicts between human welfare (farmers' demands and societal needs) and environmental protection. Achieving sustainability in this transformation will inevitably involve trade-offs between multiple ecological and socioeconomic functions. To address these trade-offs, our study used a new methodological approach allowing the identification of transformation scenarios, including theoretical landscape compositions that satisfy multiple ecological functions (i.e., structural complexity, microclimatic conditions, organic carbon in plant biomass, soil organic carbon and nutrient leaching losses), and farmers needs (i.e., labor and input requirements, total income to land, and return to land and labor) while accounting for the uncertain provision of these functions and having an actual potential for adoption by farmers. We combined a robust, multi-objective optimization approach with an iterative search algorithm allowing the identification of ecological and socioeconomic functions that best explain current land-use decisions. The model then optimized the theoretical land-use composition that satisfied multiple ecological and socioeconomic functions. Between these ends, we simulated transformation scenarios reflecting the transition from current land-use composition towards a normative multifunctional optimum. These transformation scenarios involve increasing the number of optimized socioeconomic or ecological functions, leading to higher functional richness (i.e., number of functions). We applied this method to smallholder farms in the Jambi Province, Indonesia, where traditional rubber agroforestry, rubber plantations, and oil palm plantations are the main land-use systems. Given the currently practiced land-use systems, our study revealed short-term returns to land as the principal factor in explaining current land-use decisions. Fostering an alternative composition that satisfies additional socioeconomic functions would require minor changes ("low-hanging fruits"). However, satisfying even a single ecological indicator (e.g., reduction of nutrient leaching losses) would demand substantial changes in the current land-use composition ("moonshot"). This would inevitably lead to a profit decline, underscoring the need for incentives if the societal goal is to establish multifunctional agricultural landscapes. With many oil palm plantations nearing the end of their production cycles in the Jambi province, there is a unique window of opportunity to transform agricultural landscapes.


Assuntos
Carbono , Solo , Humanos , Solo/química , Carbono/análise , Borracha , Indonésia , Florestas , Agricultura , Conservação dos Recursos Naturais
4.
Nature ; 627(8002): 116-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355803

RESUMO

Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.


Assuntos
Biodiversidade , Metabolismo Energético , Cadeia Alimentar , Floresta Úmida , Animais , Artrópodes/metabolismo , Bactérias/metabolismo , Aves/metabolismo , Sequestro de Carbono , Fezes , Fungos/metabolismo , Indonésia , Oligoquetos/metabolismo , Compostos Orgânicos/metabolismo , Óleo de Palmeira , Borracha , Solo/química , Clima Tropical
5.
Ecol Lett ; 26(11): 1951-1962, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858984

RESUMO

Urbanization is a major driver of biodiversity change but how it interacts with spatial and temporal gradients to influence the dynamics of plant-pollinator networks is poorly understood, especially in tropical urbanization hotspots. Here, we analysed the drivers of environmental, spatial and temporal turnover of plant-pollinator interactions (interaction ß-diversity) along an urbanization gradient in Bengaluru, a South Indian megacity. The compositional turnover of plant-pollinator interactions differed more between seasons and with local urbanization intensity than with spatial distance, suggesting that seasonality and environmental filtering were more important than dispersal limitation for explaining plant-pollinator interaction ß-diversity. Furthermore, urbanization amplified the seasonal dynamics of plant-pollinator interactions, with stronger temporal turnover in urban compared to rural sites, driven by greater turnover of native non-crop plant species (not managed by people). Our study demonstrates that environmental, spatial and temporal gradients interact to shape the dynamics of plant-pollinator networks and urbanization can strongly amplify these dynamics.


Assuntos
Polinização , Urbanização , Humanos , Biodiversidade , Plantas , Estações do Ano , Ecossistema
6.
Ambio ; 52(10): 1558-1574, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37286920

RESUMO

Tropical agricultural landscapes often consist of a mosaic of different land uses, yet little is known about the spectrum of ecosystem service bundles and materials they provide to rural households. We interviewed 320 households on the different benefits received from prevalent land-use types in north-eastern Madagascar (old-growth forests, forest fragments, vanilla agroforests, woody fallows, herbaceous fallows, and rice paddies) in terms of ecosystem services and plant uses. Old-growth forests and forest fragments were reported as important for regulating services (e.g. water regulation), whilst fallow lands and vanilla agroforests as important for provisioning services (food, medicine, fodder). Households reported the usage of 285 plant species (56% non-endemics) and collected plants from woody fallows for varying purposes, whilst plants from forest fragments, predominantly endemics, were used for construction and weaving. Multiple land-use types are thus complementary for providing ecosystem services, with fallow lands being particularly important. Hence, balancing societal needs and conservation goals should be based on diversified and comprehensive land management.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Florestas , Árvores , Agricultura , Biodiversidade
7.
Nature ; 618(7964): 316-321, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225981

RESUMO

In the United Nations Decade on Ecosystem Restoration1, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes2. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm. Larger tree islands led to larger gains in multidiversity through changes in vegetation structure. Furthermore, tree enrichment did not decrease landscape-scale oil palm yield. Our results demonstrate that enriching oil palm-dominated landscapes with tree islands is a promising ecological restoration strategy, yet should not replace the protection of remaining forests.


Assuntos
Biodiversidade , Produtos Agrícolas , Recuperação e Remediação Ambiental , Óleo de Palmeira , Árvores , Florestas , Óleo de Palmeira/provisão & distribuição , Árvores/fisiologia , Agricultura/métodos , Nações Unidas , Clima Tropical , Produtos Agrícolas/provisão & distribuição , Recuperação e Remediação Ambiental/métodos
8.
Ecol Appl ; 33(5): e2862, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37096419

RESUMO

As the extent of oil palm (Elaeis guineensis) cultivation has expanded at the expense of tropical rainforests, enriching conventional large-scale oil palm plantations with native trees has been proposed as a strategy for restoring biodiversity and ecosystem function. However, how tree enrichment affects insect-mediated ecosystem functions is unknown. We investigated impacts on insect herbivory and pollination in the fourth year of a plantation-scale, long-term oil palm biodiversity enrichment experiment in Jambi, Sumatra, Indonesia. Within 48 plots systematically varying in size (25-1600 m2 ) and planted tree species richness (one to six species), we collected response data on vegetation structure, understory insect abundances, and pollinator and herbivore activity on chili plants (Capsicum annuum), which served as indicators of insect-mediated ecosystem functions. We examined the independent effects of plot size, tree species richness, and tree identity on these response variables, using the linear model for random partitions design. The experimental treatments were most associated with vegetation structure: tree identity mattered, as the species Peronema canescens strongly decreased (by approximately one standard deviation) both canopy openness and understory vegetation cover; whereas tree richness only decreased understory flower density. Further, the smallest plots had the lowest understory flower density and richness, presumably because of lower light availability and colonization rates, respectively. Enrichment influenced herbivorous insects and natural enemies in the understory to a lesser extent: both groups had higher abundances in plots with two enrichment species planted, possibly because higher associated tree mortality created more habitat, while herbivores decreased with increasing tree species richness, in line with the resource concentration hypothesis. Linking relationships in structural equation models showed that the negative association between P. canescens and understory vegetation cover was mediated through canopy openness. Likewise, canopy openness mediated increases in herbivore and pollinator insect abundances. Higher pollinator visitation increased phytometer yield, while impacts of insect herbivores on yield were not apparent. Our results demonstrate that even at an early stage, different levels of ecological restoration influence insect-mediated ecosystem functions, mainly through canopy openness. These findings suggest that maintaining some canopy gaps while enrichment plots develop may be beneficial for increasing habitat heterogeneity and insect-mediated ecosystem functions.


Assuntos
Ecossistema , Árvores , Animais , Árvores/fisiologia , Herbivoria , Polinização , Biodiversidade , Insetos/fisiologia , Plantas , Florestas
9.
Commun Biol ; 5(1): 1214, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357489

RESUMO

Habitat fragmentation impacts seed dispersal processes that are important in maintaining biodiversity and ecosystem functioning. However, it is still unclear how habitat fragmentation affects frugivorous interactions due to the lack of high-quality data on plant-frugivore networks. Here we recorded 10,117 plant-frugivore interactions from 22 reservoir islands and six nearby mainland sites using the technology of arboreal camera trapping to assess the effects of island area and isolation on the diversity, structure, and stability of plant-frugivore networks. We found that network simplification under habitat fragmentation reduces the number of interactions involving specialized species and large-bodied frugivores. Small islands had more connected, less modular, and more nested networks that consisted mainly of small-bodied birds and abundant plants, as well as showed evidence of interaction release (i.e., dietary expansion of frugivores). Our results reveal the importance of preserving large forest remnants to support plant-frugivore interaction diversity and forest functionality.


Assuntos
Ecossistema , Frutas , Animais , Árvores , Florestas , Aves , Plantas
10.
One Earth ; 5(7): 756-766, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35898653

RESUMO

Extreme events, such as those caused by climate change, economic or geopolitical shocks, and pest or disease epidemics, threaten global food security. The complexity of causation, as well as the myriad ways that an event, or a sequence of events, creates cascading and systemic impacts, poses significant challenges to food systems research and policy alike. To identify priority food security risks and research opportunities, we asked experts from a range of fields and geographies to describe key threats to global food security over the next two decades and to suggest key research questions and gaps on this topic. Here, we present a prioritization of threats to global food security from extreme events, as well as emerging research questions that highlight the conceptual and practical challenges that exist in designing, adopting, and governing resilient food systems. We hope that these findings help in directing research funding and resources toward food system transformations needed to help society tackle major food system risks and food insecurity under extreme events.

11.
Nat Commun ; 13(1): 4127, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882849

RESUMO

Resolving ecological-economic trade-offs between biodiversity and yields is a key challenge when addressing the biodiversity crisis in tropical agricultural landscapes. Here, we focused on the relation between seven different taxa (trees, herbaceous plants, birds, amphibians, reptiles, butterflies, and ants) and yields in vanilla agroforests in Madagascar. Agroforests established in forests supported overall 23% fewer species and 47% fewer endemic species than old-growth forests, and 14% fewer endemic species than forest fragments. In contrast, agroforests established on fallows had overall 12% more species and 38% more endemic species than fallows. While yields increased with vanilla vine density and length, non-yield related variables largely determined biodiversity. Nonetheless, trade-offs existed between yields and butterflies as well as  reptiles. Vanilla yields were generally unrelated to richness of trees, herbaceous plants, birds, amphibians, reptiles, and ants, opening up possibilities for conservation outside of protected areas and restoring degraded land to benefit farmers and biodiversity alike.


Assuntos
Formigas , Borboletas , Anfíbios , Animais , Biodiversidade , Aves , Conservação dos Recursos Naturais , Florestas , Plantas , Répteis , Árvores
13.
Ecol Appl ; 32(8): e2699, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35751512

RESUMO

Urbanization poses a major threat to biodiversity and food security, as expanding cities, especially in the Global South, increasingly compete with natural and agricultural lands. However, the impact of urban expansion on agricultural biodiversity in tropical regions is overlooked. Here we assess how urbanization affects the functional response of farmland bees, the most important pollinators for crop production. We sampled bees across three seasons in 36 conventional vegetable-producing farms spread along an urbanization gradient in Bengaluru, an Indian megacity. We investigated how landscape and local environmental drivers affected different functional traits (sociality, nesting behavior, body size, and specialization) and functional diversity (functional dispersion) of bee communities. We found that the functional responses to urbanization were trait specific with more positive than negative effects of gray area (sealed surfaces and buildings) on species richness, functional diversity, and abundance of most functional groups. As expected, larger, solitary, cavity-nesting, and, surprisingly, specialist bees benefited from urbanization. In contrast to temperate cities, the abundance of ground nesters increased in urban areas, presumably because larger patches of bare soil were still available beside roads and buildings. However, overall bee abundance and the abundance of social bees (85% of all bees) decreased with urbanization, threatening crop pollination. Crop diversity promotes taxonomic and functional diversity of bee communities. Locally, flower resources promote the abundance of all functional groups, and natural vegetation can maintain diverse pollinator communities throughout the year, especially during the noncropping season. However, exotic plants decrease functional diversity and bee specialization. To safeguard bees and their pollination services in urban farms, we recommend (1) preserving seminatural vegetation (hedges) around cropping fields to provide nesting opportunities for aboveground nesters, (2) promoting farm-level crop diversification of beneficial crops (e.g., pulses, vegetables, and spices), (3) maintaining native natural vegetation along field margins, and (4) controlling and removing invasive exotic plants that disrupt native plant-pollinator interactions. Overall, our results suggest that urban agriculture can maintain functionally diverse bee communities and, if managed in a sustainable manner, be used to develop win-win solutions for biodiversity conservation of pollinators and food security in and around cities.


Assuntos
Biodiversidade , Polinização , Abelhas , Animais , Fazendas , Polinização/fisiologia , Urbanização , Produtos Agrícolas , Ecossistema
14.
BMC Ecol Evol ; 22(1): 51, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473550

RESUMO

BACKGROUND: Intense conversion of tropical forests into agricultural systems contributes to habitat loss and the decline of ecosystem functions. Plant-pollinator interactions buffer the process of forest fragmentation, ensuring gene flow across isolated patches of forests by pollen transfer. In this study, we identified the composition of pollen grains stored in pot-pollen of stingless bees, Tetragonula laeviceps, via dual-locus DNA metabarcoding (ITS2 and rbcL) and light microscopy, and compared the taxonomic coverage of pollen sampled in distinct land-use systems categorized in four levels of management intensity (forest, shrub, rubber, and oil palm) for landscape characterization. RESULTS: Plant composition differed significantly between DNA metabarcoding and light microscopy. The overlap in the plant families identified via light microscopy and DNA metabarcoding techniques was low and ranged from 22.6 to 27.8%. Taxonomic assignments showed a dominance of pollen from bee-pollinated plants, including oil-bearing crops such as the introduced species Elaeis guineensis (Arecaceae) as one of the predominant taxa in the pollen samples across all four land-use types. Native plant families Moraceae, Euphorbiaceae, and Cannabaceae appeared in high proportion in the analyzed pollen material. One-way ANOVA (p > 0.05), PERMANOVA (R² values range from 0.14003 to 0.17684, for all tests p-value > 0.5), and NMDS (stress values ranging from 0.1515 to 0.1859) indicated a lack of differentiation between the species composition and diversity of pollen type in the four distinct land-use types, supporting the influx of pollen from adjacent areas. CONCLUSIONS: Stingless bees collected pollen from a variety of agricultural crops, weeds, and wild plants. Plant composition detected at the family level from the pollen samples likely reflects the plant composition at the landscape level rather than the plot level. In our study, the plant diversity in pollen from colonies installed in land-use systems with distinct levels of forest transformation was highly homogeneous, reflecting a large influx of pollen transported by stingless bees through distinct land-use types. Dual-locus approach applied in metabarcoding studies and visual pollen identification showed great differences in the detection of the plant community, therefore a combination of both methods is recommended for performing biodiversity assessments via pollen identification.


Assuntos
Microscopia , Floresta Úmida , Animais , Abelhas/genética , Monitoramento Biológico , Produtos Agrícolas/genética , Código de Barras de DNA Taxonômico , Ecossistema , Indonésia , Pólen/genética
16.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35165148

RESUMO

Sustainable land-system transformations are necessary to avert biodiversity and climate collapse. However, it remains unclear where entry points for transformations exist in complex land systems. Here, we conceptualize land systems along land-use trajectories, which allows us to identify and evaluate leverage points, i.e., entry points on the trajectory where targeted interventions have particular leverage to influence land-use decisions. We apply this framework in the biodiversity hotspot Madagascar. In the northeast, smallholder agriculture results in a land-use trajectory originating in old-growth forests and spanning from forest fragments to shifting hill rice cultivation and vanilla agroforests. Integrating interdisciplinary empirical data on seven taxa, five ecosystem services, and three measures of agricultural productivity, we assess trade-offs and cobenefits of land-use decisions at three leverage points along the trajectory. These trade-offs and cobenefits differ between leverage points: Two leverage points are situated at the conversion of old-growth forests and forest fragments to shifting cultivation and agroforestry, resulting in considerable trade-offs, especially between endemic biodiversity and agricultural productivity. Here, interventions enabling smallholders to conserve forests are necessary. This is urgent since ongoing forest loss threatens to eliminate these leverage points due to path dependency. The third leverage point allows for the restoration of land under shifting cultivation through vanilla agroforests and offers cobenefits between restoration goals and agricultural productivity. The co-occurring leverage points highlight that conservation and restoration are simultaneously necessary to avert collapse of multifunctional mosaic landscapes. Methodologically, the framework highlights the importance of considering path dependency along trajectories to achieve sustainable land-system transformations.


Assuntos
Agricultura , Biodiversidade , Conservação dos Recursos Naturais/métodos , Agricultura Florestal , Modelos Biológicos , Animais , Humanos , Madagáscar
17.
Nat Ecol Evol ; 6(3): 307-314, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027724

RESUMO

Larger geographical areas contain more species-an observation raised to a law in ecology. Less explored is whether biodiversity changes are accompanied by a modification of interaction networks. We use data from 32 spatial interaction networks from different ecosystems to analyse how network structure changes with area. We find that basic community structure descriptors (number of species, links and links per species) increase with area following a power law. Yet, the distribution of links per species varies little with area, indicating that the fundamental organization of interactions within networks is conserved. Our null model analyses suggest that the spatial scaling of network structure is determined by factors beyond species richness and the number of links. We demonstrate that biodiversity-area relationships can be extended from species counts to higher levels of network complexity. Therefore, the consequences of anthropogenic habitat destruction may extend from species loss to wider simplification of natural communities.


Assuntos
Biodiversidade , Ecossistema
19.
Ecol Lett ; 24(12): 2700-2712, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34612562

RESUMO

To understand how plant-pollinator interactions respond to habitat fragmentation, we need novel approaches that can capture properties that emerge at broad scales, where multiple communities engage in metanetworks. Here we studied plant-pollinator interactions over 2 years on 29 calcareous grassland fragments selected along independent gradients of habitat size and surrounding landscape diversity of cover types. We associated network centrality of plant-pollinator interactions and grassland fragments with their ecological and landscape traits, respectively. Interactions involving habitat specialist plants and large-bodied pollinators were the most central, implying that species with these traits form the metanetwork core. Large fragments embedded in landscapes with high land cover diversity exhibited the highest centrality; however, small fragments harboured many unique interactions not found on larger fragments. Intensively managed landscapes have reached a point in which all remaining fragments matter, meaning that losing any further areas may vanish unique interactions with unknown consequences for ecosystem functioning.


Assuntos
Ecossistema , Plantas , Fenótipo , Polinização
20.
Trends Ecol Evol ; 36(10): 919-930, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34362590

RESUMO

We challenge the widespread appraisal that organic farming is the fundamental alternative to conventional farming for harnessing biodiversity in agricultural landscapes. Certification of organic production is largely restricted to banning synthetic agrochemicals, resulting in limited benefits for biodiversity but high yield losses despite ongoing intensification and specialisation. In contrast, successful agricultural measures to enhance biodiversity include diversifying cropland and reducing field size, which can multiply biodiversity while sustaining high yields in both conventional and organic systems. Achieving a landscape-level mosaic of natural habitat patches and fine-grained cropland diversification in both conventional and organic agriculture is key for promoting large-scale biodiversity. This needs to be urgently acknowledged by policy makers for an agricultural paradigm shift.


Assuntos
Biodiversidade , Agricultura Orgânica , Agricultura , Conservação dos Recursos Naturais , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...